Clean up GraphViz stuff a bit
author |
Steve Losh <steve@stevelosh.com> |
date |
Wed, 02 Nov 2016 12:03:29 +0000 |
parents |
60ef1d1333e9 |
children |
060160061ec6 |
(in-package :scully.zdd)
;;;; Utils --------------------------------------------------------------------
(defun gcprint (thing &rest args)
(let ((*print-circle* t))
(apply #'print
(prog1 thing
(tg:gc :full t :verbose t))
args)))
(defpattern sink (&optional content)
`(structure leaf :content ,content))
(defun never (val)
(declare (ignore val))
(values))
(defun print-through (function val)
(pr (funcall function val))
val)
(defun mapprint-through (function val)
(mapc #'pr (funcall function val))
val)
(defun line (x)
(declare (ignore x))
'----------------------------------------)
;;;; GraphViz -----------------------------------------------------------------
(setf cl-dot:*dot-path* "/usr/local/bin/dot")
(defparameter *draw-unique-sinks* nil)
(defparameter *draw-unique-nodes* nil)
(defparameter *draw-hex-p* #'never)
(defun attrs (object &rest attributes)
(make-instance 'cl-dot:attributed
:object object
:attributes attributes))
(defun sink-attrs (val)
`(:label ,(if val "⊤" "⊥")
:shape :square
:style :filled
:fillcolor "#fafafa"
:color "#aaaaaa"
:fontsize 22
:width 0.05))
(defmethod cl-dot:graph-object-node ((graph (eql 'zdd)) (object node))
(make-instance 'cl-dot:node
:attributes (ematch object
((node v) `(:label ,v
:shape ,(if (funcall *draw-hex-p* v)
:hexagon
:circle))))))
(defmethod cl-dot:graph-object-node ((graph (eql 'zdd)) (object cons))
(cl-dot:graph-object-node graph (car object)))
(defmethod cl-dot:graph-object-node ((graph (eql 'zdd)) (object leaf))
(make-instance 'cl-dot:node
:attributes (ematch object ((sink c) (sink-attrs c)))))
(defun wrap-node (object)
(ematch object
((sink) (if *draw-unique-sinks* object (cons object nil)))
((node) (if *draw-unique-nodes* object (cons object nil)))))
(defmethod cl-dot:graph-object-points-to ((graph (eql 'zdd))
(object t))
(ematch object
((cons object _)
(cl-dot:graph-object-points-to graph object))
((sink _)
'())
((node _ hi lo)
(list (attrs (wrap-node hi) :style :solid)
(attrs (wrap-node lo) :style :dashed)))))
(defun draw (zdd &key
(filename "zdd.png")
(unique-sinks nil)
(unique-nodes t)
(hexp #'never))
(let ((*draw-unique-sinks* unique-sinks)
(*draw-unique-nodes* unique-nodes)
(*draw-hex-p* hexp))
(cl-dot:dot-graph
(cl-dot:generate-graph-from-roots 'zdd (list (wrap-node zdd)))
filename
:format :png))
zdd)
;;;; ZDDs ---------------------------------------------------------------------
(defparameter *cache*
(tg:make-weak-hash-table :weakness :value :test #'equalp))
(defmacro with-zdd (&body body)
`(with-odd-context (:operation #'zdd-apply :node-cache *cache*)
,@body))
(defun enumerate (zdd)
"Return a list of all members of `zdd`."
(ematch zdd
((sink nil) nil)
((sink t) (list nil))
((node variable hi lo)
(append (mapcar (curry #'cons variable) (enumerate hi))
(enumerate lo)))))
(defun zdd-count (zdd)
"Return the number of members of `zdd`."
(ematch zdd
((sink nil) 0)
((sink t) 1)
((node _ hi lo) (+ (zdd-count hi)
(zdd-count lo)))))
(defun zdd-size (zdd)
"Return the number of unique nodes in `zdd`."
(let ((seen (make-hash-table :test 'eq)))
(recursively ((zdd zdd))
(ematch zdd
((sink) (setf (gethash zdd seen) t))
((node _ hi lo)
(when (not (gethash zdd seen))
(setf (gethash zdd seen) t)
(recur lo)
(recur hi)))))
(hash-table-count seen)))
(defun pick-random (a a-weight b b-weight)
(if (< (random (+ a-weight b-weight))
a-weight)
a
b))
(defun zdd-random-member (zdd)
"Select a random member of `zdd`."
(ematch zdd
((sink nil) (error "No elements to choose from!"))
((sink t) nil)
((node var hi lo)
(let ((hi-weight (zdd-count hi)) ; todo: memoize these
(lo-weight (zdd-count lo)))
(if (< (random (+ lo-weight hi-weight))
lo-weight)
(zdd-random-member lo)
(cons var (zdd-random-member hi)))))))
(defun unit-patch (z)
(ematch z
((sink t) z)
((sink nil) (leaf t))
((node variable hi lo)
(zdd-node variable hi (unit-patch lo)))))
(defun zdd-set (elements)
(make-set elements))
(defun zdd-union% (a b)
(ematch* (a b)
(((node) (sink)) (zdd-union% b a))
(((sink nil) b) b)
(((sink t) b) (unit-patch b))
(((node var-a hi-a lo-a)
(node var-b hi-b lo-b))
(cond
((< var-a var-b) (zdd-node var-a hi-a (zdd-union% lo-a b)))
((> var-a var-b) (zdd-node var-b hi-b (zdd-union% lo-b a)))
((= var-a var-b) (zdd-node var-a
(zdd-union% hi-a hi-b)
(zdd-union% lo-a lo-b)))))))
(defun zdd-union (&rest zdds)
(if zdds
(reduce #'zdd-union% zdds)
(leaf nil)))
(defun zdd-intersection% (a b)
(ematch* (a b)
(((node) (sink)) (zdd-intersection% b a))
(((sink nil) _) (leaf nil))
((_ (sink nil)) (leaf nil))
(((sink t) (sink _)) b)
(((sink t) (node _ _ lo)) (zdd-intersection% a lo))
(((node var-a hi-a lo-a)
(node var-b hi-b lo-b))
(cond
((< var-a var-b) (zdd-intersection% lo-a b))
((> var-a var-b) (zdd-intersection% lo-b a))
((= var-a var-b) (zdd-node var-a
(zdd-intersection% hi-a hi-b)
(zdd-intersection% lo-a lo-b)))))))
(defun zdd-intersection (&rest zdds)
(if zdds
(reduce #'zdd-intersection% zdds)
(leaf nil)))
(defun zdd-join% (a b)
(ematch* (a b)
(((sink nil) _) (leaf nil))
((_ (sink nil)) (leaf nil))
(((sink t) b) b)
((a (sink t)) a)
(((node var-a hi-a lo-a)
(node var-b hi-b lo-b))
(cond
((< var-a var-b) (zdd-node var-a
(zdd-join% hi-a b)
(zdd-join% lo-a b)))
((> var-a var-b) (zdd-node var-b
(zdd-join% hi-b a)
(zdd-join% lo-b a)))
((= var-a var-b) (zdd-node var-a
(zdd-union (zdd-join% hi-a lo-b)
(zdd-join% lo-a hi-b)
(zdd-join% hi-a hi-b))
(zdd-join% lo-a lo-b)))))))
(defun zdd-join (&rest zdds)
(if zdds
(reduce #'zdd-join% zdds)
(leaf nil)))
(defun zdd-meet% (a b)
(ematch* (a b)
(((sink nil) _) (leaf nil))
((_ (sink nil)) (leaf nil))
(((sink t) _) (leaf t))
((_ (sink t)) (leaf t))
(((node var-a hi-a lo-a)
(node var-b hi-b lo-b))
(cond
((< var-a var-b) (zdd-union (zdd-meet% hi-a b)
(zdd-meet% lo-a b)))
((> var-a var-b) (zdd-union (zdd-meet% hi-b a)
(zdd-meet% lo-b a)))
((= var-a var-b) (zdd-node var-a
(zdd-meet% hi-a hi-b)
(zdd-union (zdd-meet% hi-a lo-b)
(zdd-meet% lo-a hi-b)
(zdd-meet% lo-a lo-b))))))))
(defun zdd-meet (&rest zdds)
(if zdds
(reduce #'zdd-meet% zdds)
(leaf nil)))
(defun zdd-family (&rest sets)
(reduce #'zdd-union (mapcar #'zdd-set sets)))
(defun zdd-keep-supersets-of% (zdd set)
(ematch* (zdd set)
((_ nil) zdd)
(((sink) _) (leaf nil))
(((node var hi lo) (list* el remaining))
(cond
((= var el) (zdd-node var
(zdd-keep-supersets-of% hi remaining)
(leaf nil)))
((< var el) (zdd-node var
(zdd-keep-supersets-of% hi set)
(zdd-keep-supersets-of% lo set)))
((> var el) (leaf nil))))))
(defun zdd-keep-supersets-of (zdd set)
(zdd-keep-supersets-of% zdd (sort set #'<)))
(defun zdd-remove-supersets-of% (zdd set)
(ematch* (zdd set)
((_ nil) (leaf nil))
(((sink) _) zdd)
(((node var hi lo) (list* el remaining))
(cond
((= var el) (zdd-node var
(zdd-remove-supersets-of% hi remaining)
lo))
((< var el) (zdd-node var
(zdd-remove-supersets-of% hi set)
(zdd-remove-supersets-of% lo set)))
((> var el) zdd)))))
(defun zdd-remove-supersets-of (zdd set)
(zdd-remove-supersets-of% zdd (sort set #'<)))
(defun zdd-keep-avoiders-of% (zdd set)
(ematch* (zdd set)
((_ nil) zdd)
(((sink) _) zdd)
(((node var hi lo) (list* el remaining))
(cond
((= var el) (zdd-keep-avoiders-of% lo remaining))
((< var el) (zdd-node var
(zdd-keep-avoiders-of% hi set)
(zdd-keep-avoiders-of% lo set)))
((> var el) (zdd-keep-avoiders-of% zdd remaining))))))
(defun zdd-keep-avoiders-of (zdd set)
(zdd-keep-avoiders-of% zdd (sort set #'<)))
(defun zdd-match% (zdd set lower-bound upper-bound)
(recursively ((zdd zdd) (set set))
(ematch zdd
;; If Z = ∅, there are no candidates for matching.
((sink nil) (leaf nil))
;; If Z = {∅}, the only set ∅ can match is the empty set.
((sink t) (if set
(leaf nil)
(leaf t)))
;; Otherwise Z is a real node.
((node var hi lo)
(cond
;; If we're below the lower bound of the universe, just recur down.
((< var lower-bound) (zdd-node var
(recur hi set)
(recur lo set)))
;; If we're above the upper bound of the universe, we're never gonna
;; see anything more we might need to match.
;;
;; If our target set is empty, that's perfect. But if it's NOT empty,
;; we're never gonna satisfy it.
((> var upper-bound) (if set
(leaf nil)
zdd))
;; Otherwise Z's var is within the universe.
(t (ematch set
;; If our target is empty, only the lo branch of Z can possibly
;; match.
(nil (recur lo set))
;; Otherwise we've got a target element. Almost there!
((list* element remaining)
(cond
;; If we're below the target element, we recur down the lo
;; branch because the hi branch contains something unwanted.
((< var element) (recur lo set))
;; If we're above the target element, we can never match.
((> var element) (leaf nil))
;; Otherwise, we recur down the hi branch with the rest of our
;; target (the lo branch is always missing this element).
((= var element) (zdd-node var
(recur hi remaining)
; jeeeeeeeesus
(leaf nil))))))))))))
(defun zdd-match (zdd set lower-bound upper-bound)
(zdd-match% zdd (sort set #'<) lower-bound upper-bound))
;;;; Rule Trees ---------------------------------------------------------------
(defun rule-head (rule)
(first rule))
(defun rule-body (rule)
(rest rule))
(defun rule-first-body (rule)
(first (rule-body rule)))
(defun rule-empty-p (rule)
(null (rule-body rule)))
(defun negationp (term)
(and (consp term) (eql 'not (first term))))
(defun bare-term (term)
(if (negationp term)
(second term)
term))
(defun term< (t1 t2)
(< (bare-term t1) (bare-term t2)))
(defun sort-body (rule)
(destructuring-bind (head . body) rule
(list* head (sort body #'term<))))
(defun drop-first (rule)
(destructuring-bind (head . body) rule
(list* head (rest body))))
(defun find-smallest-body-term (rules)
(-<> rules
(mapcar #'rule-first-body <>)
(sort <> #'term<)
(first <>)))
(defun partition-rules (rules)
(let ((element (bare-term (find-smallest-body-term rules))))
(labels
((rule-requires (rule)
(equal (rule-first-body rule) element))
(rule-disallows (rule)
(equal (rule-first-body rule) `(not ,element)))
(rule-ignores (rule)
(not (or (rule-requires rule)
(rule-disallows rule)))))
(values element
(remove-if-not #'rule-disallows rules)
(remove-if-not #'rule-requires rules)
(remove-if-not #'rule-ignores rules)))))
(defun make-rule-tree (rules)
(recursively ((rules (mapcar #'sort-body rules))
(accumulated-heads nil))
(let* ((heads (-<> rules
(remove-if-not #'rule-empty-p <>)
(mapcar #'rule-head <>)
(remove-duplicates <> :test #'equal)
(union accumulated-heads <> :test #'equal))) ; slow
(next-rules (remove-if
(lambda (rule)
(member (rule-head rule) heads :test #'equal))
rules)))
(if (null next-rules)
(zdd-set heads)
(multiple-value-bind (term low high both)
(partition-rules next-rules)
(zdd-node term
(recur (append (mapcar #'drop-first high) both) heads)
(recur (append (mapcar #'drop-first low) both) heads)))))))
(defun apply-rule-tree (zdd rule-tree head-bound)
(recursively ((zdd zdd)
(rule-tree rule-tree))
(ematch* (zdd rule-tree)
;; If Z = ∅ there are no sets to cons heads onto, bail.
(((sink nil) _) zdd)
;; If R = ∅ or {∅} we've bottomed out of the rule tree and there are no
;; heads to cons, we're done.
((_ (sink)) zdd)
;; If we've passed the head boundary on the rule tree side then we're done
;; filtering and just need to cons in all the heads.
((_ (guard (node var _ _)
(>= var head-bound)))
(zdd-join zdd rule-tree))
;; If Z = {∅} we might have some heads we need to cons later in the rule
;; tree, so recur down the lo side of it.
(((sink t) (node _ _ lo))
(recur zdd lo))
;; Otherwise we need to filter.
(((node var-z hi-z lo-z) (node var-r hi-r lo-r))
(cond
((= var-z var-r) (zdd-node var-z
(recur hi-z hi-r)
(recur lo-z lo-r)))
((< var-z var-r) (zdd-node var-z
(recur hi-z rule-tree)
(recur lo-z rule-tree)))
((> var-z var-r) (recur zdd lo-r)))))))
;;;; Scratch ------------------------------------------------------------------
(with-zdd
(-<> (zdd-join (zdd-family '(1 2) '(7 8) '())
(zdd-family '(1 5 9) nil)
(zdd-set '(1)))
(print-through #'enumerate <>)
(zdd-keep-avoiders-of <> '(2 7))
(print-through #'enumerate <>)
(draw <>)
(zdd-size <>)
))
(defparameter *rules* '(
(1001 (not 2) 1)
(1001 1 3)
(1002 3)
(1003 4 2)
(1003 (not 3) 4)
(1004 1 2 3 (not 4))
(1005 (not 2) (not 3))
(1006 4 5)
(1006 2)
))
(defparameter *state* '(
(1 3)
(1 2)
(2 4 5)
()
(1 2 4 7)
)
)
(with-zdd
(-<> (make-rule-tree *rules*)
; (print-enumerated <>)
; (zdd-keep-avoiders-of <> '(2 7))
(mapprint-through #'enumerate <>)
(print-through #'zdd-count <>)
(print-through #'zdd-size <>)
(draw <> :unique-sinks t :unique-nodes t :hexp (curry #'<= 1000))
; (zdd-size <>)
(never)
)
; (pr '--------------)
; (-<> (apply #'zdd-family *state*)
; (mapprint-through #'enumerate <>)
; (print-through #'zdd-count <>)
; (print-through #'zdd-size <>)
; ; (draw <>)
; ; (zdd-size <>)
; (never)
; )
; (pr '--------------)
; (-<> (apply-rule-tree (apply #'zdd-family *state*)
; (make-rule-tree *rules*)
; 100)
; (mapprint-through #'enumerate <>)
; (print-through #'zdd-count <>)
; (print-through #'zdd-size <>)
; ; (draw <>)
; ; (zdd-size <>)
; (never)
; )
)
(defun test ()
(with-zdd
(print-hash-table
(frequencies
(iterate (repeat 10000)
(collect (zdd-random-member
(zdd-family
'(1 2 3)
'(2)
'(1 3)
'(1 5)
'(5)))))
:test #'equal))))
(with-zdd
(-<> (zdd-family
'(1 2 100 200 6000)
'(100 200 300)
'(99 100 200 300)
'(1 9900)
'()
'(1 2 1001)
)
(mapprint-through #'enumerate <>)
(print-through #'line <>)
(zdd-match <> '(100 200) 100 999)
(mapprint-through #'enumerate <>)
(draw <> :hexp (lambda (v) (>= 999 v 100)))
(never <>)
))