src/random-numbers.lisp @ 740a9723b84d
Add ASCII demo with cl-charms
author |
Steve Losh <steve@stevelosh.com> |
date |
Sat, 16 Jul 2016 22:04:38 +0000 |
parents |
6f72eefef02e |
children |
579c965d6ae5 |
(in-package #:sand.random-numbers)
;;;; Types, etc
(declaim (optimize (speed 1) (safety 1) (debug 3)))
(deftype positive-fixnum () `(integer 1 ,most-positive-fixnum))
(deftype negative-fixnum () `(integer ,most-negative-fixnum -1))
(deftype nonnegative-fixnum () `(integer 1 ,most-positive-fixnum))
(deftype nonpositive-fixnum () `(integer ,most-negative-fixnum -1))
;;;; Utils
(defun +mod (x y m)
(if (<= x (- m 1 y))
(+ x y)
(- x (- m y))))
;;;; Random Number Generators
(defun make-linear-congruential-rng (modulus multiplier increment seed)
(let ((val seed))
(lambda (msg)
(ecase msg
(:next (setf val (mod (+ (* multiplier val)
increment)
modulus)))
(:modulus modulus)))))
(defun make-linear-congruential-rng-fast% (modulus multiplier increment seed)
(declare (optimize (speed 3) (safety 0) (debug 0)))
(let ((val seed))
(lambda (msg)
(ecase msg
(:next (setf val (mod (+ (the nonnegative-fixnum (* multiplier val))
increment)
modulus)))
(:modulus modulus)))))
(declaim (inline rng-next rng-modulus))
(defun rng-next (generator)
(funcall generator :next))
(defun rng-modulus (generator)
(funcall generator :modulus))
(define-compiler-macro make-linear-congruential-rng
(&whole form
modulus multiplier increment seed)
(if (and (constantp modulus)
(constantp multiplier)
(<= (* multiplier (1- modulus))
most-positive-fixnum))
`(make-linear-congruential-rng-fast% ,modulus ,multiplier ,increment ,seed)
form))
(defparameter *generator* (make-linear-congruential-rng 601 15 4 354))
(defun rand ()
(rng-next *generator*))
(defun rand-float ()
(float (/ (rng-next *generator*)
(rng-modulus *generator*))))
;;;; Mapping
;;; The Monte Carlo method is bad because it's biased, but it's fast.
;;;
;;; Basically we take our generator that generates say 1-8, and map the range
;;; ABC onto it:
;;;
;;; 1 2 3 4 5 6 7 8
;;; A B C A B C A B
;;;
;;; Notice that it's not uniform.
(defun monte-carlo (width)
(mod (rng-next *generator*) width))
;;; The Las Vegas method is a bit slower, but unbiased. We group the random
;;; numbers into contiguous buckets, with the last "partial bucket" being
;;; excess. If we hit that one we just loop and try again:
;;;
;;; 1 2 3 4 5 6 7 8
;;; A A B B C C retry
(defun las-vegas (width)
(let* ((modulus (rng-modulus *generator*))
(bucket-width (truncate (/ modulus width))))
(iterate
(for bucket = (truncate (/ (rng-next *generator*)
bucket-width)))
(finding bucket :such-that (< bucket width)))))
(defun rand-range-bad (min max)
(+ min (monte-carlo (- max min))))
(defun rand-range (min max)
(+ min (las-vegas (- max min))))