src/random-numbers.lisp @ 644e7f766db4
Add data to .hgignore.
| author | Steve Losh <steve@stevelosh.com> |
|---|---|
| date | Sun, 17 Jul 2016 21:37:44 +0000 |
| parents | 6f72eefef02e |
| children | 579c965d6ae5 |
(in-package #:sand.random-numbers) ;;;; Types, etc (declaim (optimize (speed 1) (safety 1) (debug 3))) (deftype positive-fixnum () `(integer 1 ,most-positive-fixnum)) (deftype negative-fixnum () `(integer ,most-negative-fixnum -1)) (deftype nonnegative-fixnum () `(integer 1 ,most-positive-fixnum)) (deftype nonpositive-fixnum () `(integer ,most-negative-fixnum -1)) ;;;; Utils (defun +mod (x y m) (if (<= x (- m 1 y)) (+ x y) (- x (- m y)))) ;;;; Random Number Generators (defun make-linear-congruential-rng (modulus multiplier increment seed) (let ((val seed)) (lambda (msg) (ecase msg (:next (setf val (mod (+ (* multiplier val) increment) modulus))) (:modulus modulus))))) (defun make-linear-congruential-rng-fast% (modulus multiplier increment seed) (declare (optimize (speed 3) (safety 0) (debug 0))) (let ((val seed)) (lambda (msg) (ecase msg (:next (setf val (mod (+ (the nonnegative-fixnum (* multiplier val)) increment) modulus))) (:modulus modulus))))) (declaim (inline rng-next rng-modulus)) (defun rng-next (generator) (funcall generator :next)) (defun rng-modulus (generator) (funcall generator :modulus)) (define-compiler-macro make-linear-congruential-rng (&whole form modulus multiplier increment seed) (if (and (constantp modulus) (constantp multiplier) (<= (* multiplier (1- modulus)) most-positive-fixnum)) `(make-linear-congruential-rng-fast% ,modulus ,multiplier ,increment ,seed) form)) (defparameter *generator* (make-linear-congruential-rng 601 15 4 354)) (defun rand () (rng-next *generator*)) (defun rand-float () (float (/ (rng-next *generator*) (rng-modulus *generator*)))) ;;;; Mapping ;;; The Monte Carlo method is bad because it's biased, but it's fast. ;;; ;;; Basically we take our generator that generates say 1-8, and map the range ;;; ABC onto it: ;;; ;;; 1 2 3 4 5 6 7 8 ;;; A B C A B C A B ;;; ;;; Notice that it's not uniform. (defun monte-carlo (width) (mod (rng-next *generator*) width)) ;;; The Las Vegas method is a bit slower, but unbiased. We group the random ;;; numbers into contiguous buckets, with the last "partial bucket" being ;;; excess. If we hit that one we just loop and try again: ;;; ;;; 1 2 3 4 5 6 7 8 ;;; A A B B C C retry (defun las-vegas (width) (let* ((modulus (rng-modulus *generator*)) (bucket-width (truncate (/ modulus width)))) (iterate (for bucket = (truncate (/ (rng-next *generator*) bucket-width))) (finding bucket :such-that (< bucket width))))) (defun rand-range-bad (min max) (+ min (monte-carlo (- max min)))) (defun rand-range (min max) (+ min (las-vegas (- max min))))