src/problems/mrna.lisp @ 870270771fde
PDST
author |
Steve Losh <steve@stevelosh.com> |
date |
Sun, 19 Jan 2020 21:14:53 -0500 |
parents |
2735aa6aab79 |
children |
(none) |
(defpackage :rosalind/mrna (:use :cl :rosalind :losh :iterate))
(in-package :rosalind/mrna)
;; We're using a real programming language, so we have actual numbers and don't
;; need to bother with modular arithmetic for the tiny inputs they're giving us
;; as data sets:
;;
;; (solve mrna) =>
;; 18223466647209680564519396994425171292117842339309783544950259938739364856964963
;; 66953808268144949737039356476412047824299213884930571696940173622342387041181012
;; 59342299576631057415056504154013752799852275638571559263796551872383306751629837
;; 52919433077998281001987083484254030689771952436244061958890571552274110433782197
;; 92667561733403741083516672972846644834108916554466004897769300303373575679132517
;; 064863091594635637947593916416
;;
;; But let's humor them and do it anyway, for fun. I added it into my utils
;; library.
(defun acid-to-codons (acid)
"Return a list of the codons that could have encoded this amino acid.
Neither the list nor the strings in it will be fresh.
Use `(mapcar #'copy-seq (acid-to-codon …))` if you need fresh copies.
"
(ecase acid
(#\I '("AUA" "AUC" "AUU"))
(#\R '("AGG" "CGG" "AGA" "CGA" "CGC" "CGU"))
(#\D '("GAC" "GAU"))
(#\V '("GUG" "GUA" "GUC" "GUU"))
(#\P '("CCG" "CCA" "CCC" "CCU"))
(#\T '("ACG" "ACA" "ACC" "ACU"))
(#\S '("AGC" "AGU" "UCG" "UCA" "UCC" "UCU"))
(#\F '("UUC" "UUU"))
(#\Y '("UAC" "UAU"))
(#\L '("CUG" "UUG" "CUA" "UUA" "CUC" "CUU"))
(#\Q '("CAG" "CAA"))
(#\H '("CAC " "CAU"))
(#\C '("UGC" "UGU"))
(#\K '("AAG" "AAA"))
(#\N '("AAC" "AAU"))
(#\M '("AUG"))
(#\W '("UGG"))
(#\G '("GGG" "GGA" "GGC" "GGU"))
(#\E '("GAG" "GAA"))
(#\A '("GCG" "GCA" "GCC" "GCU"))
((nil) '("UGA" "UAG" "UAA"))))
(defun acid-codon-count (acid)
(length (acid-to-codons acid)))
(define-problem mrna (data string) "MA" "12"
(product (delete #\newline data)
:modulo 1000000
:key #'acid-codon-count
:initial-value (acid-codon-count nil)))