Problem 10, Miller-Rabin, etc
author |
Steve Losh <steve@stevelosh.com> |
date |
Mon, 11 Apr 2016 14:40:47 +0000 (2016-04-11) |
parents |
d4b651730553
|
children |
a66997c0fad3
|
branches/tags |
(none) |
files |
.lispwords Makefile euler.lisp package.lisp primes.lisp utils.lisp |
Changes
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/.lispwords Mon Apr 11 14:40:47 2016 +0000
@@ -0,0 +1,1 @@
+(1 repeat)
--- a/Makefile Mon Apr 11 14:40:32 2016 +0000
+++ b/Makefile Mon Apr 11 14:40:47 2016 +0000
@@ -1,7 +1,7 @@
.PHONY: test
quickutils.lisp: make-utilities.lisp
- sbcl --noinform --load make-utilities.lisp --eval '(quit)'
+ sbcl-rlwrap --noinform --load make-utilities.lisp --eval '(quit)'
test:
- sbcl --noinform --load run-tests.lisp --eval '(quit)'
+ sbcl-rlwrap --noinform --load run-tests.lisp --eval '(quit)'
--- a/euler.lisp Mon Apr 11 14:40:32 2016 +0000
+++ b/euler.lisp Mon Apr 11 14:40:47 2016 +0000
@@ -145,6 +145,11 @@
:when (pythagorean-triplet-p a b c)
:do (return-from search (* a b c)))))))
+(defun problem-10 ()
+ (loop :for p :in (primes-below 2000000)
+ :sum p))
+
+
;;;; Tests
(def-suite :euler)
(in-suite :euler)
@@ -158,6 +163,7 @@
(test p7 (is (= 104743 (problem-7))))
(test p8 (is (= 23514624000 (problem-8))))
(test p9 (is (= 31875000 (problem-9))))
+(test p10 (is (= 142913828922 (problem-10))))
; (run! :euler)
--- a/package.lisp Mon Apr 11 14:40:32 2016 +0000
+++ b/package.lisp Mon Apr 11 14:40:47 2016 +0000
@@ -2,6 +2,7 @@
(:use #:cl #:euler.quickutils)
(:export
#:random-exclusive
+ #:repeat
#:dividesp))
(defpackage #:euler
--- a/primes.lisp Mon Apr 11 14:40:32 2016 +0000
+++ b/primes.lisp Mon Apr 11 14:40:47 2016 +0000
@@ -1,5 +1,11 @@
(in-package #:euler)
+(define-constant carmichael-numbers ; from oeis
+ '(561 1105 1729 2465 2821 6601 8911 10585 15841 29341 41041 46657 52633
+ 62745 63973 75361 101101 115921 126217 162401 172081 188461 252601 278545
+ 294409 314821 334153 340561 399001 410041 449065 488881 512461)
+ :test #'equal)
+
(defun prime-factorization (n)
"Return the prime factors of `n`."
;; from http://www.geeksforgeeks.org/print-all-prime-factors-of-a-given-number/
@@ -16,57 +22,142 @@
(nreverse result)))
-(defun fermat-prime-p (p &optional (tests 10))
- "Return whether `p` might be prime.
+(defun expmod (base exp m)
+ "Return base^exp % m quickly."
+ ;; From SICP and
+ ;; https://rosettacode.org/wiki/Miller%E2%80%93Rabin_primality_test#Common_Lisp
+ ;;
+ ;; We want to avoid bignums as much as possible. This computes (base^exp % m)
+ ;; without having to deal with huge numbers by taking advantage of the fact
+ ;; that:
+ ;;
+ ;; (x * y) % m
+ ;;
+ ;; is equivalent to:
+ ;;
+ ;; ((x % m) * (y % m)) % m
+ ;;
+ ;; So for the cases where `exp` is even, we can split base^exp into an x and
+ ;; y both equal to base^(exp/2) and use the above trick to handle them
+ ;; separately. Even better, we can just compute it once and square it.
+ ;;
+ ;; We also make it tail recursive by keeping a running accumulator:
+ ;;
+ ;; base^exp * acc
+ (labels
+ ((recur (base exp acc)
+ (cond
+ ((zerop exp) acc)
+ ((evenp exp)
+ (recur (rem (square base) m)
+ (/ exp 2)
+ acc))
+ (t
+ (recur base
+ (1- exp)
+ (rem (* base acc) m))))))
+ (recur base exp 1)))
+
+
+(defun fermat-prime-p (n &optional (tests 10))
+ "Return whether `n` might be prime.
Checks `tests` times.
- If `t` is returned, `p` might be prime. If `nil` is returned it is definitely
+ If `t` is returned, `n` might be prime. If `nil` is returned it is definitely
composite.
"
- (if (or (zerop p) (= 1 p))
- nil
- (flet ((fermat-check (a)
- (= 1 (mod (expt a (1- p)) p))))
- (loop :repeat tests
- :when (not (fermat-check (random-exclusive 0 p)))
- :do (return nil)
- :finally (return t)))))
+ (flet ((fermat-check (a)
+ (= (expmod a n n) a)))
+ (loop :repeat tests
+ :when (not (fermat-check (random-exclusive 0 n)))
+ :do (return nil)
+ :finally (return t))))
+
+(defun factor-out (n factor)
+ "Factor the all the `factor`s out of `n`.
+
+ Turns `n` into:
+
+ factor^e * d
+
+ where `d` is no longer divisible by `n`, and returns `e` and `d`.
+
+ "
+ (loop :for d = n :then (/ d factor)
+ :for e = 0 :then (1+ e)
+ :while (dividesp d factor)
+ :finally (return (values e d))))
+
+(defun miller-rabin-prime-p (n &optional (k 10))
+ "Return whether `n` might be prime.
+
+ If `t` is returned, `n` is probably prime.
+ If `nil` is returned, `n` is definitely composite.
-(defun brute-force-prime-p (p)
- "Return (slowly) whether `p` is prime."
+ "
+ ;; https://rosettacode.org/wiki/Miller%E2%80%93Rabin_primality_test#Common_Lisp
(cond
- ((or (= p 0) (= p 1)) nil)
- ((= p 2) t)
- ((evenp p) nil)
- (t (loop :for divisor :from 3 :to (sqrt p)
- :when (dividesp p divisor)
+ ((< n 2) nil)
+ ((< n 4) t)
+ ((evenp n) nil)
+ (t (multiple-value-bind (r d)
+ (factor-out (1- n) 2)
+ (flet ((strong-liar-p (a)
+ (let ((x (expmod a d n)))
+ (or (= x 1)
+ (loop :repeat r
+ :for y = x :then (expmod y 2 n)
+ :when (= y (1- n))
+ :do (return t))))))
+ (loop :repeat k
+ :for a = (random-exclusive 1 (1- n))
+ :always (strong-liar-p a)))))))
+
+(defun brute-force-prime-p (n)
+ "Return (slowly) whether `n` is prime."
+ (cond
+ ((or (= n 0) (= n 1)) nil)
+ ((= n 2) t)
+ ((evenp n) nil)
+ (t (loop :for divisor :from 3 :to (sqrt n)
+ :when (dividesp n divisor)
:do (return nil)
:finally (return t)))))
+(defun primep (n)
+ "Return (less slowly) whether `n` is prime."
+ (cond
+ ;; short-circuit a few edge/common cases
+ ((< n 2) nil)
+ ((= n 2) t)
+ ((evenp n) nil)
+ ((< n 100000) (brute-force-prime-p n))
+ (t (miller-rabin-prime-p n))))
+
(defun primes-below (n)
- "Return (slowly) the prime numbers less than `n`."
+ "Return the prime numbers less than `n`."
(cond
((<= n 2) (list))
((= n 3) (list 2))
(t (cons 2 (loop :for i :from 3 :by 2 :below n
- :when (brute-force-prime-p i)
+ :when (primep i)
:collect i)))))
(defun primes-upto (n)
- "Return (slowly) the prime numbers less than or equal to `n`."
+ "Return the prime numbers less than or equal to `n`."
(primes-below (1+ n)))
(defun nth-prime (n)
- "Return (slowly) the `n`th prime number."
+ "Return the `n`th prime number."
(if (= n 1)
2
(loop :with seen = 1
:for i :from 3 :by 2
- :when (brute-force-prime-p i)
+ :when (primep i)
:do (progn
(incf seen)
(when (= seen n)
--- a/utils.lisp Mon Apr 11 14:40:32 2016 +0000
+++ b/utils.lisp Mon Apr 11 14:40:47 2016 +0000
@@ -8,3 +8,8 @@
"Return whether `n` is evenly divisible by `divisor`."
(zerop (mod n divisor)))
+
+(defmacro repeat (n &body body)
+ "Repeat `body` `n` times."
+ `(dotimes (,(gensym) ,n)
+ ,@body))