6124d264353e
Problem 46
author | Steve Losh <steve@stevelosh.com> |
---|---|
date | Mon, 27 Feb 2017 00:38:16 +0000 |
parents | e7d5fdbc48b4 |
children | 735c2b5c9430 |
branches/tags | (none) |
files | src/euler.lisp src/primes.lisp |
Changes
--- a/src/euler.lisp Mon Feb 27 00:26:54 2017 +0000 +++ b/src/euler.lisp Mon Feb 27 00:38:16 2017 +0000 @@ -278,7 +278,8 @@ (defun squarep (n) "Return whether `n` is a perfect square." - (= n (square (isqrt n)))) + (and (integerp n) + (= n (square (isqrt n))))) (defun triangle (n) @@ -1368,6 +1369,30 @@ (for n = (triangle i)) (finding n :such-that (and (pentagonp n) (hexagonp n))))) +(defun problem-46 () + ;; It was proposed by Christian Goldbach that every odd composite number can + ;; be written as the sum of a prime and twice a square. + ;; + ;; 9 = 7 + 2×1² + ;; 15 = 7 + 2×2² + ;; 21 = 3 + 2×3² + ;; 25 = 7 + 2×3² + ;; 27 = 19 + 2×2² + ;; 33 = 31 + 2×1² + ;; + ;; It turns out that the conjecture was false. + ;; + ;; What is the smallest odd composite that cannot be written as the sum of + ;; a prime and twice a square? + (flet ((counterexamplep (n) + (iterate + (for prime :in (primes-below n)) + (never (squarep (/ (- n prime) 2)))))) + (iterate + (for i :from 1 :by 2) + (finding i :such-that (and (compositep i) + (counterexamplep i)))))) + ;;;; Tests -------------------------------------------------------------------- (def-suite :euler) @@ -1418,6 +1443,7 @@ (test p43 (is (= 16695334890 (problem-43)))) (test p44 (is (= 5482660 (problem-44)))) (test p45 (is (= 1533776805 (problem-45)))) +(test p46 (is (= 5777 (problem-46)))) ;; (run! :euler)
--- a/src/primes.lisp Mon Feb 27 00:26:54 2017 +0000 +++ b/src/primes.lisp Mon Feb 27 00:38:16 2017 +0000 @@ -126,6 +126,7 @@ :do (return nil) :finally (return t))))) + (defun primep (n) "Return (less slowly) whether `n` is prime." (cond @@ -136,6 +137,15 @@ ((< n 100000) (brute-force-prime-p n)) (t (miller-rabin-prime-p n)))) +(defun unitp (n) + "Return whether `n` is 1." + (= n 1)) + +(defun compositep (n) + "Return whether `n` is composite." + (and (not (unitp n)) + (not (primep n)))) + (defun primes-below (n) "Return the prime numbers less than `n`."