Episode 35: Intro to Fractals
author |
Steve Losh <steve@stevelosh.com> |
date |
Tue, 05 Jul 2016 13:58:12 +0000 |
parents |
4f1e6a70e5ad |
children |
(none) |
(in-package #:coding-math.2d.lines)
;;;; Conversions
;;; We have three ways to represent a line:
;;;
;;; * Two points (x1, y1) and (x2, y2)
;;; * Slope/intercept form (y = mx + b)
;;; * "Standard" form (Ax + By = C)
(defun xys-to-mxb (x1 y1 x2 y2)
(if (= x1 x2)
(values)
(let ((slope (/ (- y2 y1)
(- x2 x1))))
(values slope
(- y1 (* slope x1))))))
(defun xys-to-std (x1 y1 x2 y2)
(let* ((a (- y2 y1))
(b (- x1 x2))
(c (+ (* a x1) (* b y1))))
(values a b c)))
(defun mxb-to-std (slope intercept)
;; y = mx + b
;; -mx + y = b
;; Ax + By = C
(let* ((a (- slope))
(b 1)
(c intercept))
(values a b c)))
(defun mxb-to-xys (slope intercept)
;; y = mx + b
;;
;; y = 0x + b
;; y = 1x + b
(let ((x1 0)
(y1 intercept)
(x2 1)
(y2 (+ intercept slope)))
(values x1 y1 x2 y2)))
(defun std-to-mxb (a b c)
;; Ax + By = C
;; By = -Ax + C
;; y = -(A/B)x + (C/B)
(if (zerop b)
(values)
(values (- (/ a b))
(/ c b))))
(defun std-to-xys (a b c)
;; Ax + By = C
;;
;; A0 + By = C -> By = C -> y = C / B
;; A1 + By = C -> By = C - A -> y = (C - A) / B
(let ((x1 0)
(y1 (/ c b))
(x2 1)
(y2 (/ (- c a) b)))
(values x1 y1 x2 y2)))
(defun std-intersection-point (a1 b1 c1 a2 b2 c2)
(let ((denominator (- (* a1 b2) (* a2 b1))))
(if (zerop denominator)
(values)
(values (/ (- (* b2 c1) (* b1 c2)) denominator) ; x
(/ (- (* a1 c2) (* a2 c1)) denominator))))) ; y
(defun xys-intersection-point (x11 y11 x12 y12 x21 y21 x22 y22)
(multiple-value-call #'std-intersection-point
(xys-to-std x11 y11 x12 y12)
(xys-to-std x21 y21 x22 y22)))
(defun mxb-intersection-point (slope1 intercept1 slope2 intercept2)
(multiple-value-call #'std-intersection-point
(mxb-to-std slope1 intercept1)
(mxb-to-std slope2 intercept2)))
(defun xys-segments-intersection-point (x11 y11 x12 y12 x21 y21 x22 y22)
(multiple-value-bind (x y)
(xys-intersection-point x11 y11 x12 y12 x21 y21 x22 y22)
(cond
((null x)
(values)) ; parallel/colinear
((or (outsidep x11 x12 x)
(outsidep x21 x22 x)
(outsidep y11 y12 y)
(outsidep y21 y22 y))
(values)) ; intersection outside segment(s)
(t (values x y)))))