DOCUMENTATION.markdown @ f67e0d7ace27
Add some docs
author |
Steve Losh <steve@stevelosh.com> |
date |
Wed, 17 Aug 2016 00:10:00 +0000 |
parents |
(none) |
children |
3ba725d5a905 |
# Documentation for `cl-losh`
This library is my own personal utility belt.
Everything I write in here is MIT/X11 licensed, so you're free to use it if
you want. But I make no guarantees about backwards compatibility -- I might
change and break things at any time. Use this at your own risk.
[TOC]
## Package `LOSH`
### `BITS` (function)
(BITS N SIZE)
### `CALLF` (macro)
(CALLF &REST PLACE-FUNCTION-PAIRS)
Set each `place` to the result of calling `function` on its current value.
Examples:
(let ((x 10) (y 20))
(callf x #'1-
y #'1+)
(list x y))
=>
(9 21)
### `CLAMP` (function)
(CLAMP FROM TO VALUE)
Clamp `value` between `from` and `to`.
### `CLAMPF` (macro)
(CLAMPF PLACE FROM TO &ENVIRONMENT ENV)
Clamp `place` between `from` and `to` in-place.
### `D` (function)
(D N SIDES &OPTIONAL (PLUS 0))
Roll some dice.
Examples:
(d 1 4) ; rolls 1d4
(d 2 8) ; rolls 2d8
(d 1 10 -1) ; rolls 1d10-1
### `DEFINE-WITH-MACRO` (macro)
(DEFINE-WITH-MACRO TYPE &REST SLOTS)
Define a with-`type` macro for the given `type` and `slots`.
This new macro wraps `with-accessors` so you don't have to type `type-`
a billion times.
The given `type` must be a symbol naming a struct or class. It must have the
appropriate accessors with names exactly of the form `type`-`slot`.
The defined macro will look something like this:
(define-with-macro foo a b)
=>
(defmacro with-foo ((foo &optional (a-symbol 'a) (b-symbol 'b))
&body body)
`(with-accessors ((,a-symbol foo-a) (,b-symbol foo-b))
,foo
,@body))
There's a lot of magic here, but it cuts down on boilerplate for simple things
quite a lot.
Example:
(defstruct foo x y)
(define-with-macro foo x y)
(defparameter *f* (make-foo :x 10 :y 20))
(defparameter *g* (make-foo :x 555 :y 999))
(with-foo (*f*)
(with-foo (*g* gx gy)
(print (list x y gx gy))))
=>
(10 20 555 999)
### `DEQUEUE` (function)
(DEQUEUE Q)
### `DIS` (macro)
(DIS ARGLIST
&BODY
BODY)
Disassemble the code generated for a `lambda` with `arglist` and `body`.
It will also spew compiler notes so you can see why the garbage box isn't
doing what you think it should be doing.
### `DIVF` (macro)
(DIVF PLACE &OPTIONAL DIVISOR &ENVIRONMENT ENV)
Divide `place` by `divisor` in-place.
If `divisor` is not given, `place` will be set to `(/ 1 place).
### `DIVIDESP` (function)
(DIVIDESP N DIVISOR)
Return whether `n` is evenly divisible by `divisor`.
### `DLAMBDA` (macro)
(DLAMBDA &REST CLAUSES)
### `DO-ARRAY` (macro)
(DO-ARRAY (VALUE ARRAY)
&BODY
BODY)
Perform `body` once for each element in `array` using `value` for the place.
`array` can be multidimensional.
`value` will be `symbol-macrolet`ed to the appropriate `aref`, so you can use
it as a place if you want.
Returns the array.
Example:
(let ((arr (vector 1 2 3)))
(do-array (x arr)
(setf x (1+ x))))
=> #(2 3 4)
### `ENQUEUE` (function)
(ENQUEUE ITEM Q)
### `FREQUENCIES` (function)
(FREQUENCIES SEQ &KEY (TEST 'EQL))
Return a hash table containing the feqeuencies of the items in `seq`.
Uses `test` for the `:test` of the hash table.
Example:
(frequencies '(foo foo bar))
=> {foo 2
bar 1}
### `GETHASH-OR-INIT` (macro)
(GETHASH-OR-INIT KEY HASH-TABLE DEFAULT-FORM)
Get `key`'s value in `hash-table`, initializing if necessary.
If `key` is in `hash-table`: return its value without evaluating
`default-form` at all.
If `key` is NOT in `hash-table`: evaluate `default-form` and insert it before
returning it.
### `HASH-SET` (class)
#### Slot `DATA`
* Allocation: `:INSTANCE`
* Initarg: `:DATA`
### `JUXT` (function)
(JUXT &REST FNS)
Return a function that will juxtipose the results of `functions`.
This is like Clojure's `juxt`. Given functions `(f0 f1 ... fn)`, this will
return a new function which, when called with some arguments, will return
`(list (f0 ...args...) (f1 ...args...) ... (fn ...args...))`.
Example:
(funcall (juxt #'list #'+ #'- #'*) 1 2)
=> ((1 2) 3 -1 2)
### `LERP` (function)
(LERP FROM TO N)
Lerp together `from` and `to` by factor `n`.
Note that you might want `precise-lerp` instead.
### `MAKE-QUEUE` (function)
(MAKE-QUEUE)
### `MAKE-SET` (function)
(MAKE-SET &KEY (TEST #'EQL) (INITIAL-DATA NIL))
### `MAP-RANGE` (function)
(MAP-RANGE SOURCE-FROM SOURCE-TO DEST-FROM DEST-TO SOURCE-VAL)
Map `source-val` from the source range to the destination range.
Example:
; source dest value
(map-range 0.0 1.0 10.0 20.0 0.2)
=> 12.0
### `MODF` (macro)
(MODF PLACE DIVISOR &ENVIRONMENT ENV)
Modulo `place` by `divisor` in-place.
### `MULF` (macro)
(MULF PLACE FACTOR &ENVIRONMENT ENV)
Multiply `place` by `factor` in-place.
### `NEGATEF` (macro)
(NEGATEF PLACE &ENVIRONMENT ENV)
Negate the value of `place`.
### `NORM` (function)
(NORM MIN MAX VAL)
Normalize `val` to a number between `0` and `1` (maybe).
If `val` is between `max` and `min`, the result will be a number between `0`
and `1`.
If `val` lies outside of the range, it'll be still be scaled and will end up
outside the 0/1 range.
### `PR` (function)
(PR &REST ARGS)
### `PREFIX-SUMS` (function)
(PREFIX-SUMS LIST)
Return a list of the prefix sums of the numbers in `list`.
Example:
(prefix-sums '(10 10 10 0 1))
=> (10 20 30 30 31)
### `QUEUE`
`#<STANDARD-CLASS DOCPARSER:STRUCT-NODE>`
### `QUEUE-APPEND` (function)
(QUEUE-APPEND Q L)
### `QUEUE-CONTENTS` (function)
(QUEUE-CONTENTS VALUE INSTANCE)
### `QUEUE-EMPTY-P` (function)
(QUEUE-EMPTY-P Q)
### `QUEUE-SIZE` (function)
(QUEUE-SIZE VALUE INSTANCE)
### `RANDOM-AROUND` (function)
(RANDOM-AROUND VALUE SPREAD)
Return a random number within `spread` of `value`.
### `RANDOM-ELT` (function)
(RANDOM-ELT SEQ)
Return a random element of `seq`, and whether one was available.
This will NOT be efficient for lists.
Examples:
(random-elt #(1 2 3))
=> 1
T
(random-elt nil)
=> nil
nil
### `RANDOM-GAUSSIAN` (function)
(RANDOM-GAUSSIAN &OPTIONAL (MEAN 0.0) (STANDARD-DEVIATION 1.0))
Return a random float from a gaussian distribution. NOT THREAD-SAFE (yet)!
### `RANDOM-GAUSSIAN-INTEGER` (function)
(RANDOM-GAUSSIAN-INTEGER &OPTIONAL (MEAN 0) (STANDARD-DEVIATION 1))
Return a random integer from a gaussian distribution. NOT THREAD-SAFE (yet)!
### `RANDOM-RANGE` (function)
(RANDOM-RANGE MIN MAX)
Return a random number between [`min`, `max`).
### `RANDOM-RANGE-EXCLUSIVE` (function)
(RANDOM-RANGE-EXCLUSIVE MIN MAX)
Return a random number between (`min`, `max`).
### `RANDOMP` (function)
(RANDOMP &OPTIONAL (CHANCE 0.5))
Return a random boolean with `chance` probability of `t`.
### `RECURSIVELY` (macro)
(RECURSIVELY BINDINGS
&BODY
BODY)
Execute body recursively, like Clojure's `loop`/`recur`.
`bindings` should contain a list of symbols and (optional) default values.
In `body`, `recur` will be bound to the function for recurring.
Example:
(defun length (some-list)
(recursively ((list some-list) (n 0))
(if (null list)
n
(recur (cdr list) (1+ n)))))
### `REMAINDERF` (macro)
(REMAINDERF PLACE DIVISOR &ENVIRONMENT ENV)
Remainder `place` by `divisor` in-place.
### `SET-ADD` (function)
(SET-ADD SET VALUE)
### `SET-ADD-ALL` (function)
(SET-ADD-ALL SET SEQ)
### `SET-CLEAR` (function)
(SET-CLEAR SET)
### `SET-CONTAINS-P` (function)
(SET-CONTAINS-P SET VALUE)
### `SET-EMPTY-P` (function)
(SET-EMPTY-P SET)
### `SET-POP` (function)
(SET-POP SET)
### `SET-RANDOM` (function)
(SET-RANDOM SET)
### `SET-REMOVE` (function)
(SET-REMOVE SET VALUE)
### `SET-REMOVE-ALL` (function)
(SET-REMOVE-ALL SET SEQ)
### `SLURP` (function)
(SLURP PATH)
Sucks up an entire file from PATH into a freshly-allocated string,
returning two values: the string and the number of bytes read.
### `SPIT` (function)
(SPIT PATH STR)
Spit the string into a file at the given path.
### `SQUARE` (function)
(SQUARE X)
### `SYMBOLIZE` (function)
(SYMBOLIZE &REST ARGS)
Slap `args` together stringishly into a symbol and intern it.
Example:
(symbolize 'foo :bar "baz")
=> 'foobarbaz
### `TAKE` (function)
(TAKE N LIST)
Return a fresh list of the first `n` elements of `list`.
If `list` is shorter than `n` a shorter result will be returned.
Example:
(take 2 '(a b c))
=> (a b)
(take 4 '(1))
=> (1)
### `TAU` (variable)
### `ZAPF` (macro)
(ZAPF &REST PLACE-EXPR-PAIRS &ENVIRONMENT ENV)
Update each `place` by evaluating `expr` with `%` bound to the current value.
`zapf` works like `setf`, but when evaluating the value expressions the symbol
`%` will be bound to the current value of the place.
Examples:
(zapf foo (1+ %)
(car bar) (if (> % 10) :a :b))