test/tests.lisp @ 884333cfb6fb
v1.3.2
Detect *all* cycles during topological sort
Previously the cycle detection was limited to detecting when we hit
a currently-being-visited node during a traversal. So something like this would
be correctly found:
A --> B --> C
^ |
| |
+-----+
We start at the root (A), go to B, then to C, then to B, and detect that we're
still working on B and signal the error.
But this doesn't find all cycles, because we *start* at the root nodes, and if
a cycle doesn't have any outcropping branches we'll never reach it at all. For
example:
A --> B
^ |
| |
+-----+
This graph has no roots, so we incorrectly ignore the cycle.
This patch fixes the problem by keeping a count of visited nodes and and making
sure it matches the digraph's size at the end.
Fixes https://github.com/sjl/cl-digraph/issues/4
author |
Steve Losh <steve@stevelosh.com> |
date |
Mon, 14 Dec 2020 20:13:51 -0500 |
parents |
0434eb58dde3 |
children |
7e80eda84170 |
(in-package :digraph.test)
;;;; Utils --------------------------------------------------------------------
(defmacro define-test (name &body body)
`(test ,(symb 'test- name)
(let ((*package* ,*package*))
,@body)))
(defun same (a b)
(null (set-exclusive-or a b :test #'equal)))
(defun run-tests ()
(1am:run))
;;;; Tests --------------------------------------------------------------------
(define-test make-digraph
(let ((g (make-digraph)))
(is (zerop (count-vertices g)))
(is (same () (vertices g)))
(is (same () (edges g)))
(is (emptyp g)))
(let ((g (make-digraph :initial-vertices '(a b c))))
(is (= 3 (count-vertices g)))
(is (same '(a b c) (vertices g)))
(is (same () (edges g)))
(is (not (emptyp g))))
(let ((g (make-digraph :initial-vertices '(a b a c a a))))
(is (= 3 (count-vertices g)))
(is (same '(a b c) (vertices g)))
(is (same () (edges g)))
(is (not (emptyp g)))))
(define-test copy-digraph
(let ((g (make-digraph :initial-vertices '(a b c)))
(h nil))
(insert-edge g 'a 'b)
(is (same '(a b c) (vertices g)))
(is (same '((a . b)) (edges g)))
(setf h (copy-digraph g))
(is (same '(a b c) (vertices h)))
(is (same '((a . b)) (edges h)))
(remove-edge h 'a 'b)
(remove-vertex h 'c)
(is (same '(a b) (vertices h)))
(is (same '() (edges h)))
;; make sure the original didn't change
(is (same '(a b c) (vertices g)))
(is (same '((a . b)) (edges g)))))
(define-test roots-and-leafs
(let ((g (make-digraph)))
(is (same () (roots g)))
(is (same () (leafs g)))
(insert-vertex g 'a)
(insert-vertex g 'b)
(is (same '(a b) (roots g)))
(is (same '(a b) (leafs g)))
(insert-edge g 'a 'b)
(is (same '(a) (roots g)))
(is (same '(b) (leafs g)))
(insert-edge g 'b 'a)
(is (same () (roots g)))
(is (same () (leafs g)))))
(define-test insert-vertex
(let ((g (make-digraph)))
(is (= 0 (count-vertices g)))
(is (same '() (vertices g)))
(insert-vertex g 'a)
(is (= 1 (count-vertices g)))
(is (same '(a) (vertices g)))
(insert-vertex g 'b)
(is (= 2 (count-vertices g)))
(is (same '(a b) (vertices g)))
(insert-vertex g 'a) ; dup
(is (= 2 (count-vertices g)))
(is (same '(a b) (vertices g)))))
(define-test insert-edge
(let ((g (make-digraph :initial-vertices '(a b c))))
(insert-edge g 'a 'b)
(is (same '((a . b))
(edges g)))
(insert-edge g 'b 'c)
(is (same '((a . b) (b . c))
(edges g)))))
(define-test remove-vertex
(let ((g (make-digraph :initial-vertices '(a b c))))
(insert-edge g 'a 'b)
(insert-edge g 'b 'c)
(is (same '(a b c) (vertices g)))
(is (same '((a . b) (b . c)) (edges g)))
(remove-vertex g 'c)
(is (same '(a b) (vertices g)))
(is (same '((a . b)) (edges g)))
(remove-vertex g 'c)
(is (same '(a b) (vertices g)))
(is (same '((a . b)) (edges g)))
(remove-vertex g 'b)
(is (same '(a) (vertices g)))
(is (same '() (edges g)))))
(define-test remove-edge
(let ((g (make-digraph :initial-vertices '(a b c))))
(insert-edge g 'a 'b)
(insert-edge g 'b 'c)
(is (same '((a . b) (b . c)) (edges g)))
(remove-edge g 'a 'b)
(is (same '((b . c)) (edges g)))
(remove-edge g 'a 'b)
(is (same '((b . c)) (edges g)))
(remove-edge g 'b 'c)
(is (same '() (edges g)))))
(defun make-simple-digraph ()
;; a ----> middle ----> z <-+ orphan
;; ^ ^ | |
;; | | +---+
;; b ---------+
(let ((g (make-digraph :initial-vertices '(a b middle z orphan))))
(insert-edge g 'a 'middle)
(insert-edge g 'b 'middle)
(insert-edge g 'b 'a)
(insert-edge g 'middle 'z)
(insert-edge g 'z 'z)
g))
(define-test neighbors
(let ((g (make-simple-digraph)))
(is (same '(b middle) (neighbors g 'a)))
(is (same '(a middle) (neighbors g 'b)))
(is (same '(a b z) (neighbors g 'middle)))
(is (same '(middle z) (neighbors g 'z)))
(is (same '() (neighbors g 'orphan)))))
(define-test predecessors
(let ((g (make-simple-digraph)))
(is (same '(b) (predecessors g 'a)))
(is (same '() (predecessors g 'b)))
(is (same '(a b) (predecessors g 'middle)))
(is (same '(middle z) (predecessors g 'z)))
(is (same '() (predecessors g 'orphan)))))
(define-test successors
(let ((g (make-simple-digraph)))
(is (same '(middle) (successors g 'a)))
(is (same '(a middle) (successors g 'b)))
(is (same '(z) (successors g 'middle)))
(is (same '(z) (successors g 'z)))
(is (same '() (successors g 'orphan)))))
(define-test contains-vertex-p ()
(let ((g (make-digraph :initial-vertices '(a b c))))
(is (contains-vertex-p g 'a))
(is (contains-vertex-p g 'b))
(is (contains-vertex-p g 'c))
(is (null (contains-vertex-p g 'd)))
(insert-vertex g 'd)
(is (contains-vertex-p g 'd))
(remove-vertex g 'd)
(is (null (contains-vertex-p g 'd)))))
(define-test contains-edge-p ()
(let ((g (make-digraph :initial-vertices '(a b c))))
(is (null (contains-edge-p g 'a 'b)))
(is (null (contains-edge-p g 'c 'c)))
(insert-edge g 'a 'b)
(is (contains-edge-p g 'a 'b))
(is (null (contains-edge-p g 'c 'c)))
(insert-edge g 'c 'c)
(is (contains-edge-p g 'a 'b))
(is (contains-edge-p g 'c 'c))
(remove-edge g 'a 'b)
(is (null (contains-edge-p g 'a 'b)))
(is (contains-edge-p g 'c 'c))
(remove-edge g 'c 'c)
(is (null (contains-edge-p g 'a 'b)))
(is (null (contains-edge-p g 'c 'c)))))
(define-test degree
(let ((g (make-simple-digraph)))
(is (= 2 (degree g 'a)))
(is (= 2 (degree g 'b)))
(is (= 3 (degree g 'middle)))
(is (= 2 (degree g 'z)))
(is (= 0 (degree g 'orphan)))))
(define-test degree-in
(let ((g (make-simple-digraph)))
(is (= 1 (degree-in g 'a)))
(is (= 0 (degree-in g 'b)))
(is (= 2 (degree-in g 'middle)))
(is (= 2 (degree-in g 'z)))
(is (= 0 (degree g 'orphan)))))
(define-test degree-out
(let ((g (make-simple-digraph)))
(is (= 1 (degree-out g 'a)))
(is (= 2 (degree-out g 'b)))
(is (= 1 (degree-out g 'middle)))
(is (= 1 (degree-out g 'z)))
(is (= 0 (degree g 'orphan)))))
(define-test reachablep
(let ((g (make-simple-digraph)))
(is (reachablep g 'orphan 'orphan))
(is (reachablep g 'b 'a))
(is (reachablep g 'b 'z))
(is (not (reachablep g 'a 'b)))
(is (not (reachablep g 'z 'orphan)))))
(define-test abitrary-vertex
(let ((g (make-simple-digraph)))
(is (member (arbitrary-vertex g) '(a b middle z orphan)))
(remove-vertex g 'b)
(is (member (arbitrary-vertex g) '(a middle z orphan)))
(remove-vertex g 'middle)
(is (member (arbitrary-vertex g) '(a z orphan)))
(remove-vertex g 'z)
(is (member (arbitrary-vertex g) '(a orphan)))
(remove-vertex g 'a)
(is (member (arbitrary-vertex g) '(orphan)))
(remove-vertex g 'orphan)
(is (null (arbitrary-vertex g)))
(insert-vertex g 'new)
(is (member (arbitrary-vertex g) '(new)))))
(define-test topological-sort-cycle-detection
(let ((g (make-digraph :initial-vertices '(a b c d))))
(is (= 4 (length (topological-sort g))))
(insert-edge g 'a 'b)
(is (= 4 (length (topological-sort g))))
(insert-edge g 'b 'c)
(is (= 4 (length (topological-sort g))))
(insert-edge g 'c 'a)
(signals error (topological-sort g))
(remove-edge g 'c 'a)
(insert-edge g 'd 'd)
(signals error (topological-sort g))
(remove-edge g 'd 'd)
(insert-edge g 'c 'd)
(is (= 4 (length (topological-sort g))))
(insert-edge g 'd 'b)
(signals error (topological-sort g))))