vendor/quickutils.lisp @ f0ec1842d603
Make the pluralization slightly less awful
author |
Steve Losh <steve@stevelosh.com> |
date |
Mon, 06 Feb 2017 21:24:37 +0000 |
parents |
3d7298dcd3ef |
children |
d6aa232e6306 |
;;;; This file was automatically generated by Quickutil.
;;;; See http://quickutil.org for details.
;;;; To regenerate:
;;;; (qtlc:save-utils-as "quickutils.lisp" :utilities '(:CURRY :ENSURE-BOOLEAN :ENSURE-LIST :FLIP :RANGE :RCURRY :RIFFLE :SPLIT-SEQUENCE) :ensure-package T :package "CHANCERY.QUICKUTILS")
(eval-when (:compile-toplevel :load-toplevel :execute)
(unless (find-package "CHANCERY.QUICKUTILS")
(defpackage "CHANCERY.QUICKUTILS"
(:documentation "Package that contains Quickutil utility functions.")
(:use #:cl))))
(in-package "CHANCERY.QUICKUTILS")
(when (boundp '*utilities*)
(setf *utilities* (union *utilities* '(:MAKE-GENSYM-LIST :ENSURE-FUNCTION
:CURRY :ENSURE-BOOLEAN :ENSURE-LIST
:FLIP :RANGE :RCURRY :RIFFLE
:SPLIT-SEQUENCE))))
(eval-when (:compile-toplevel :load-toplevel :execute)
(defun make-gensym-list (length &optional (x "G"))
"Returns a list of `length` gensyms, each generated as if with a call to `make-gensym`,
using the second (optional, defaulting to `\"G\"`) argument."
(let ((g (if (typep x '(integer 0)) x (string x))))
(loop repeat length
collect (gensym g))))
) ; eval-when
(eval-when (:compile-toplevel :load-toplevel :execute)
;;; To propagate return type and allow the compiler to eliminate the IF when
;;; it is known if the argument is function or not.
(declaim (inline ensure-function))
(declaim (ftype (function (t) (values function &optional))
ensure-function))
(defun ensure-function (function-designator)
"Returns the function designated by `function-designator`:
if `function-designator` is a function, it is returned, otherwise
it must be a function name and its `fdefinition` is returned."
(if (functionp function-designator)
function-designator
(fdefinition function-designator)))
) ; eval-when
(defun curry (function &rest arguments)
"Returns a function that applies `arguments` and the arguments
it is called with to `function`."
(declare (optimize (speed 3) (safety 1) (debug 1)))
(let ((fn (ensure-function function)))
(lambda (&rest more)
(declare (dynamic-extent more))
;; Using M-V-C we don't need to append the arguments.
(multiple-value-call fn (values-list arguments) (values-list more)))))
(define-compiler-macro curry (function &rest arguments)
(let ((curries (make-gensym-list (length arguments) "CURRY"))
(fun (gensym "FUN")))
`(let ((,fun (ensure-function ,function))
,@(mapcar #'list curries arguments))
(declare (optimize (speed 3) (safety 1) (debug 1)))
(lambda (&rest more)
(apply ,fun ,@curries more)))))
(defun ensure-boolean (x)
"Convert `x` into a Boolean value."
(and x t))
(defun ensure-list (list)
"If `list` is a list, it is returned. Otherwise returns the list designated by `list`."
(if (listp list)
list
(list list)))
(defun flip (f)
"Return a function whose argument order of a binary function `f` is reversed."
#'(lambda (y x)
(funcall f x y)))
(defun range (start end &key (step 1) (key 'identity))
"Return the list of numbers `n` such that `start <= n < end` and
`n = start + k*step` for suitable integers `k`. If a function `key` is
provided, then apply it to each number."
(assert (<= start end))
(loop :for i :from start :below end :by step :collecting (funcall key i)))
(defun rcurry (function &rest arguments)
"Returns a function that applies the arguments it is called
with and `arguments` to `function`."
(declare (optimize (speed 3) (safety 1) (debug 1)))
(let ((fn (ensure-function function)))
(lambda (&rest more)
(declare (dynamic-extent more))
(multiple-value-call fn (values-list more) (values-list arguments)))))
(defun riffle (list obj)
"Insert the item `obj` in between each element of `list`."
(loop :for (x . xs) :on list
:collect x
:when xs
:collect obj))
(defun split-from-end (position-fn sequence start end count remove-empty-subseqs)
(loop
:for right := end :then left
:for left := (max (or (funcall position-fn sequence right) -1)
(1- start))
:unless (and (= right (1+ left))
remove-empty-subseqs) ; empty subseq we don't want
:if (and count (>= nr-elts count))
;; We can't take any more. Return now.
:return (values (nreverse subseqs) right)
:else
:collect (subseq sequence (1+ left) right) into subseqs
:and :sum 1 :into nr-elts
:until (< left start)
:finally (return (values (nreverse subseqs) (1+ left)))))
(defun split-from-start (position-fn sequence start end count remove-empty-subseqs)
(let ((length (length sequence)))
(loop
:for left := start :then (+ right 1)
:for right := (min (or (funcall position-fn sequence left) length)
end)
:unless (and (= right left)
remove-empty-subseqs) ; empty subseq we don't want
:if (and count (>= nr-elts count))
;; We can't take any more. Return now.
:return (values subseqs left)
:else
:collect (subseq sequence left right) :into subseqs
:and :sum 1 :into nr-elts
:until (>= right end)
:finally (return (values subseqs right)))))
(macrolet ((check-bounds (sequence start end)
(let ((length (gensym (string '#:length))))
`(let ((,length (length ,sequence)))
(check-type ,start unsigned-byte "a non-negative integer")
(when ,end (check-type ,end unsigned-byte "a non-negative integer or NIL"))
(unless ,end
(setf ,end ,length))
(unless (<= ,start ,end ,length)
(error "Wrong sequence bounds. start: ~S end: ~S" ,start ,end))))))
(defun split-sequence (delimiter sequence &key (start 0) (end nil) (from-end nil)
(count nil) (remove-empty-subseqs nil)
(test #'eql) (test-not nil) (key #'identity))
"Return a list of subsequences in seq delimited by delimiter.
If :remove-empty-subseqs is NIL, empty subsequences will be included
in the result; otherwise they will be discarded. All other keywords
work analogously to those for CL:SUBSTITUTE. In particular, the
behaviour of :from-end is possibly different from other versions of
this function; :from-end values of NIL and T are equivalent unless
:count is supplied. The second return value is an index suitable as an
argument to CL:SUBSEQ into the sequence indicating where processing
stopped."
(check-bounds sequence start end)
(cond
((and (not from-end) (null test-not))
(split-from-start (lambda (sequence start)
(position delimiter sequence :start start :key key :test test))
sequence start end count remove-empty-subseqs))
((and (not from-end) test-not)
(split-from-start (lambda (sequence start)
(position delimiter sequence :start start :key key :test-not test-not))
sequence start end count remove-empty-subseqs))
((and from-end (null test-not))
(split-from-end (lambda (sequence end)
(position delimiter sequence :end end :from-end t :key key :test test))
sequence start end count remove-empty-subseqs))
((and from-end test-not)
(split-from-end (lambda (sequence end)
(position delimiter sequence :end end :from-end t :key key :test-not test-not))
sequence start end count remove-empty-subseqs))))
(defun split-sequence-if (predicate sequence &key (start 0) (end nil) (from-end nil)
(count nil) (remove-empty-subseqs nil) (key #'identity))
"Return a list of subsequences in seq delimited by items satisfying
predicate.
If :remove-empty-subseqs is NIL, empty subsequences will be included
in the result; otherwise they will be discarded. All other keywords
work analogously to those for CL:SUBSTITUTE-IF. In particular, the
behaviour of :from-end is possibly different from other versions of
this function; :from-end values of NIL and T are equivalent unless
:count is supplied. The second return value is an index suitable as an
argument to CL:SUBSEQ into the sequence indicating where processing
stopped."
(check-bounds sequence start end)
(if from-end
(split-from-end (lambda (sequence end)
(position-if predicate sequence :end end :from-end t :key key))
sequence start end count remove-empty-subseqs)
(split-from-start (lambda (sequence start)
(position-if predicate sequence :start start :key key))
sequence start end count remove-empty-subseqs)))
(defun split-sequence-if-not (predicate sequence &key (count nil) (remove-empty-subseqs nil)
(from-end nil) (start 0) (end nil) (key #'identity))
"Return a list of subsequences in seq delimited by items satisfying
\(CL:COMPLEMENT predicate).
If :remove-empty-subseqs is NIL, empty subsequences will be included
in the result; otherwise they will be discarded. All other keywords
work analogously to those for CL:SUBSTITUTE-IF-NOT. In particular,
the behaviour of :from-end is possibly different from other versions
of this function; :from-end values of NIL and T are equivalent unless
:count is supplied. The second return value is an index suitable as an
argument to CL:SUBSEQ into the sequence indicating where processing
stopped."
(check-bounds sequence start end)
(if from-end
(split-from-end (lambda (sequence end)
(position-if-not predicate sequence :end end :from-end t :key key))
sequence start end count remove-empty-subseqs)
(split-from-start (lambda (sequence start)
(position-if-not predicate sequence :start start :key key))
sequence start end count remove-empty-subseqs))))
(eval-when (:compile-toplevel :load-toplevel :execute)
(export '(curry ensure-boolean ensure-list flip range rcurry riffle
split-sequence split-sequence-if split-sequence-if-not)))
;;;; END OF quickutils.lisp ;;;;