# HG changeset patch # User Steve Losh <steve@stevelosh.com> # Date 1488215614 0 # Node ID 42b1fe4f8f2702620c85346c9a09c3e8860619ff # Parent 72503ae3ff8cc6d479da905c7e42878313f946db Dat sieve diff -r 72503ae3ff8c -r 42b1fe4f8f27 src/euler.lisp --- a/src/euler.lisp Mon Feb 27 16:41:37 2017 +0000 +++ b/src/euler.lisp Mon Feb 27 17:13:34 2017 +0000 @@ -454,7 +454,7 @@ (defun problem-10 () ;; The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. ;; Find the sum of all the primes below two million. - (sum (primes-below 2000000))) + (sum (sieve 2000000))) (defun problem-11 () ;; In the 20×20 grid below, four numbers along a diagonal line have been marked @@ -1147,7 +1147,7 @@ (mapcar (curry #'rotate n) (range 1 (digits-length n)))) (circular-prime-p (n) (every #'primep (rotations n)))) - (iterate (for i :in (primes-below 1000000)) + (iterate (for i :in-vector (sieve 1000000)) (counting (circular-prime-p i))))) (defun problem-36 () @@ -1394,7 +1394,7 @@ ;; a prime and twice a square? (flet ((counterexamplep (n) (iterate - (for prime :in (primes-below n)) + (for prime :in-vector (sieve n)) (never (squarep (/ (- n prime) 2)))))) (iterate (for i :from 1 :by 2) @@ -1484,7 +1484,7 @@ ;; ;; Which prime, below one-million, can be written as the sum of the most ;; consecutive primes? - (let ((primes (coerce (primes-below 1000000) 'vector))) + (let ((primes (sieve 1000000))) (flet ((score (start) (iterate (with sum = 0) @@ -1503,6 +1503,7 @@ (for (values score winner) = (score i)) (finding winner :maximizing score))))) + (defun problem-52 () ;; It can be seen that the number, 125874, and its double, 251748, contain ;; exactly the same digits, but in a different order. @@ -1565,6 +1566,7 @@ (counting (= 60 (term-count i)))))) + ;;;; Tests -------------------------------------------------------------------- (def-suite :euler) (in-suite :euler) @@ -1610,7 +1612,7 @@ (test p39 (is (= 840 (problem-39)))) (test p40 (is (= 210 (problem-40)))) (test p41 (is (= 7652413 (problem-41)))) -(test p42 (is (= 210 (problem-42)))) +(test p42 (is (= 162 (problem-42)))) (test p43 (is (= 16695334890 (problem-43)))) (test p44 (is (= 5482660 (problem-44)))) (test p45 (is (= 1533776805 (problem-45)))) diff -r 72503ae3ff8c -r 42b1fe4f8f27 src/primes.lisp --- a/src/primes.lisp Mon Feb 27 16:41:37 2017 +0000 +++ b/src/primes.lisp Mon Feb 27 17:13:34 2017 +0000 @@ -178,6 +178,19 @@ (primes% (1+ min) max)) +(defun sieve (limit) + "Return a vector of all primes below `limit`." + (check-type limit (integer 0 #.array-dimension-limit)) + (iterate + (with numbers = (make-array limit :initial-element 1 :element-type 'bit)) + (for bit :in-vector numbers :with-index n :from 2) + (when (= 1 bit) + (collect n :result-type vector) + (iterate (for composite :from (* 2 n) :by n) + (while (< composite limit)) + (setf (aref numbers composite) 0))))) + + (defun nth-prime (n) "Return the `n`th prime number." (if (= n 1)